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ABSTRACT
microRNA (miRNA) is a family of small, non-coding RNA first discovered as an important regulator of development in Caenorhabditis elegans

(C. elegans). Numerous miRNAs have been found in C. elegans, and some of them are well conserved in many organisms. Though, the biologic

function of miRNAs in C. elegans was largely unknown, more and more studies support the idea that miRNA is an important molecular

for C. elegans. In this review, we revisit the research progress of miRNAs in C. elegans related with development, aging, cancer,

and neurodegenerative diseases and compared the function of miRNAs between C. elegans and human. J. Cell. Biochem. 114: 994–

1000, 2013. � 2012 Wiley Periodicals, Inc.
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m icroRNA (miRNA) is a family of 21–25 nucleotides small

RNA which regulates expression of characterized targets

at the post-transcriptional level. The biogenesis of miRNA was well

delineated by some reviews [Ambros, 2004; Bartel, 2004; Carthew

and Sontheimer, 2009]. In detail, miRNA is initially processed from

introns of protein-coding genes or RNA polymerase II (RNAPII)

specific transcripts of independent genes. The nascent miRNA

transcripts (pri-miRNA) are first cleaved to be precursors (pre-

miRNA) by a protein complex Drosha and the double-stranded RNA-

binding protein Pasha in the nucleus [Carthew and Sontheimer,

2009; Kim et al., 2009]. Thereafter, the pre-miRNAs are exported to

the cytoplasm by exportin-5, and transformed to 21–25 nucleotides

mature miRNAs by nuclease Dicer. Finally, mature miRNAs

incorporated into miRNA-induced silencing complex (miRISC),

and imperfectly bind with complementary sequences in the 30-
untranslated regions (UTRs) of target mRNAs and negatively

regulate gene expression through translational inhibition (Fig. 1)

[Cullen, 2004; Kim, 2005].

The existence of miRNA in C. elegans was first identified by Lee

et al. [1993], and the other 154 miRNAs were found in C. elegans

subsequently by scientists [Grad et al., 2003; Lim et al., 2003].

Noteworthy, recent studies suggested that miRNAs in C. elegans

have the similar properties with mammalian. According to the

miRBase (release 10.1) database, approximately 62% or 55–62%

miRNAs of C. elegans relate to Drosophila and human [Ibanez-

Ventoso et al., 2008], more importantly 34 miRNAs in C. elegans are

conserved through other species [Lim et al., 2003]. In C. elegans the

expression levels of miRNAs are varied in different developmental

periods [Karp et al., 2011]. The wide conservatism and timing

expression suggests miRNAs may play an important role in

evolution and development. The present review will highlight

advantages of C. elegans as a model organism for miRNAs studies

and recent findings of miRNAs in C. elegans.

THE ADVANTAGES OF C. elegans AS A MODEL
ORGANISM

The discovery of miRNAs in C. elegans has its inevitability.

C. elegans, as a subtype of nematodes, is the first animal with known

whole genome sequence. Its full genome encodes about 20,000

genes, of which at least 40% has homolog genes in the human

genome [Sternberg, 2001]. It has two sexes, the hermaphrodite

and the male. Based on the sexual character, C. elegans display

Journal of Cellular
Biochemistry

PROSPECTS
Journal of Cellular Biochemistry 114:994–1000 (2013)

994

Grant sponsor: Natural Science Foundation of China; Grant numbers: 81271207, 81070882; Grant sponsor: The Funds
for Creative Research Groups of the National Natural Science Foundation of China; Grant number: 81121003; Grant
sponsor: Outstanding Youth Foundation of Heilongjiang Province; Grant number: JC200904.

*Correspondence to: Jing Ai or Baofeng Yang, Department of Pharmacology, Harbin Medical University, No.157
Baojian Road, Nangang District, Harbin 150081, China. E-mail: a.z.hrbmu@gmail.com; yangbf@ems.hrbmu.edu.cn

Manuscript Received: 28 October 2012; Manuscript Accepted: 1 November 2012

Accepted manuscript online in Wiley Online Library (wileyonlinelibrary.com): 13 November 2012

DOI 10.1002/jcb.24448 � � 2012 Wiley Periodicals, Inc.



unparalleled advantages in genetic studies. Hermaphrodite

C. elegans are common used to conduct genetic mating and

analysis due to their breed true by self-fertilization and keep the

traits without mating [Strange, 2006]. C. elegans also used to study

developmental mechanism because of their clear developmental

cycle (embryogenesis and four larval stages: L1–L4), which was

punctuated by molts [Luo, 2004]. In a favorable environment, larval

development is rapid and continuous [Sulston and Horvitz, 1977].

However, in unfavorable environment C. elegans will enter a

developmental arrested, long-lived, and highly stress-resistant stage

called dauer diapause [Cassada and Russell, 1975]. Furthermore,

recent studies have found that some miRNA and proteins in dauer

larvae were different from non-dauer animals in various develop-

mental stages [Jones et al., 2001; Wang and Kim, 2003]. These

features of C. elegans provided an excellent animal model to study

mechanisms of cell differentiation, development, and aging. It is

worth mentioning that there are many landmark discoveries using

the small worm. In 1974, Brenner used Ethyl Methanesulphonate

(EMS) chemical mutagenesis to induce wild-type C. elegans and

established �300 mutants with characterized behavior and

morphology [Brenner, 1974]. It laid the foundation for C. elegans

in the animal behavior and development genetic study. In 1977,

Sulston used the differential interfering contrast (DIC) technology to

study different phenotypes of cell characteristics in C. elegans and

painted a unique cell fates lineage diagram [Sulston and Horvitz,

1977; Sulston et al., 1983], which provided a platform for scientists

to study the genetic development regulatory mechanism on the

single cell in C. elegans. Based on above work, Horvitz cloned dozen

genes that regulated the programmed cell death in C. elegans and the

following studies found these genes were similar with mammals

[Ellis and Horvitz, 1986; Horvitz, 1999]. In 2002, Sydney Brenner

shared the Nobel Prize in Physiology and Medicine with John

Sulston and H. Robert Horvitz for their discovery of genes in

C. elegans that regulate organ development and programmed cell

death. These achievements display the irreplaceable position of

C. elegans in the field of biomedical research.

FUNCTION OF miRNAs In C. elegans
DEVELOPMENT

Animal development is a complex, strictly regulated process. Recent

studies discovered miRNAs important roles in development. It was

report that 12 miRNAs expression increases dramatically and eight

miRNAs expression decreases dramatically in the lifespan from L1–

L4 [Karp et al., 2011]. Among these miRNAs, the lin-4 and let-7

family are well studied. The lin-4 was found to control the L1 to L2

development of C. elegans by targeting on lin-14 and lin-28 mRNAs

and then the two mRNAs regulate hbl-1 expression directly

[Ambros, 1989; Wightman et al., 1993]. The let-7 was reported to

control cell fate of hypodermal in the time of late-larval

development [Reinhart et al., 2000]. Over-expression of let-7 can

prevent the development of C. elegans from the L4 to adult by

directly inhibiting the expression of lin-41, hbl-1, daf-12, and pha-4

Fig. 1. Model of the biogenesis and post-transcriptional suppression of miRNAs. The pri-miRNA transcripts are first processed into pre-miRNA by Drosha inside the nucleus.

Pre-miRNAs are transported into the cytoplasm by Exportin 5 and then become miRNA:miRNA� duplexes by Dicer. Next, one strand of the miRNA:miRNA� duplex is assembled

into the miRNA-induced silencing complex (miRISC). Finally, miRNA acts on its target by translational repression or mRNA cleavage.
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mRNAs. These mRNAs were further found to regulate the

development of C. elegans by depressing the transcription factor

lin-29 [Slack et al., 2000; Lin et al., 2003; Grosshans et al., 2005].

Furthermore, miR-48, miR-84, and miR-241 were found to

participate in the L2 to L3 development of C. elegans by targeting

on hbl-1 mRNA. In addition, miR-48 and miR-84 also acted on

cessation of the larval molting cycle at the adult stage, but their

target genes are unknown (Fig. 2) [Abbott et al., 2005].

FUNCTION OF miRNAs IN C. elegans LIFESPAN

At the achievement of the larval development, aging is following

and along with miRANs change. de Lencastre et al. [2010] reported

that comparing with Day 0 of adulthood wild-type C. elegans,

7 miRNAs were significantly up-regulated, and 23 miRNAs greatly

down-regulated on day 10, suggesting miRNAs may involved in

aging pathways to regulate the lifespan of C. elegans.

Insulin/IGF-1 signaling (IIS) is the first pathway identified in

regulating C. elegans lifespan [Kenyon et al., 1993]. In this pathway,

DAF-2 (insulin receptor-like protein) is the key component to

control the lifespan of C. elegans by regulating the expression of

both transcription factor abnormal dauer formation-16 (DAF-16)

and heat shock factor-1 (HSF-1) [Lin et al., 1997; Hsu et al., 2003].

The loss of daf-2 function in C. elegans is considered to increase

lifespan, while gain of daf-16 function is required for the longevity

which can be antagonized by daf-2 in wild-type C. elegans [Lin et al.,

2001]. In 2005, Boehm and Slack first reported that over-expression

of lin-4 can induce a longevity in C. elegans, whereas loss of lin-4

function has an opposite phenomenon. Thereafter, they found the

lin-4 induced longevity by targeting on the lin-14 which act on the

daf-16 and hsf-1 of IIS pathway [Boehm and Slack, 2005; Boehm

and Slack, 2006]. Lin-4 is the first and a classical example of miRNA

to regulate lifespan. These phenomena suggest miRNAs could

regulate C. elegans lifespan by affecting different stage. However,

whether miRNAs affect the lifespan of C. elegans by direct acting on

Insulin/IGF-1 signaling pathway is unknown.

Dietary Restriction (DR) is another molecular mechanism in

C. elegans lifespan regulation [Lakowski and Hekimi, 1998]. Studies

indicated that the extension of lifespan in the eat-2 (a nicotinic

acetylcholine receptor subunit that acts in the pharyngeal muscle)

mutant C. elegans by DR was dependent on a transcription factor

named by pharynx development defect-4 (PHA-4) [Panowski et al.,

2007] rather than DAF-16 [Houthoofd et al., 2003]. Interest, based

on the miRNAs databases (TargetScan), pha-4 is a potential target

of let-7. However, there is no report that let-7 can affect lifespan

through down-regulating pha-4 in aging C. elegans until now.

Therefore, whether miRNAs involved in DR pathway is still unclear

up-to-now.

It is well known that oxidative stress can affect lifespan [Kenyon,

2005]. However, whether aging-associated miRNAs could influence

C. elegans lifespan through affecting the response of C. elegans to

Fig. 2. The function of the miRNAs in C. elegans development. The lin-4 miRNA targets lin-14 and lin-28, which interact in early larval development. Lin-46 acts downstream

of lin-28 and regulates the expression of hbl-1. The let-7 miRNA targets the lin-41, hbl-1, daf-12, and pha-4 mRNAs, which lead to the expression of the transcription factor

lin-29. miR-48, miR-84, and miR-241 which are let-7-like miRNAs regulate the hbl-1 mRNA at the early development time. The dotted line represents a possible role of mir-48,

mir-84, and mir-241 during development.
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stress is unknown. Previous studies found that deletion of miR-239

enhanced resistance to both heat stress and oxidative stress finally

resulted in longevity, while deletion of miR-71 was converse. In

contrast, deletions of miR-238 and miR-246 induce increased

sensitivity to oxidation and heat stress, respectively [de Lencastre

et al., 2010]. However, the exact mechanism is still unknown. The

transcriptional factor skn-1 plays a key role in the oxidative stress

pathway, and is also necessary for intestinal development in

C. elegans [An and Blackwell, 2003; Park et al., 2009]. Though skn-1

is a target for all miR-71, miR-238, and miR-239, whether these

miRNAs act on skn-1 and regulate the C. elegans response to stress

and lifespan need to be further studied (Fig. 3).

miRNA AND DISEASE: C. elegans TO HUMAN

Since human share the common laws of development and

differentiation with C. elegans, studies about miRNAs in

C. elegans would provide invaluable hints to understand the role

of miRNAs on physiological and pathophysiological process in

human.

In human, inappropriate cell proliferation and differentiation are

reminiscent of cancer, and recent studies indicated that many

miRNAs were involved in development of various human

malignancies [Lu et al., 2005]. Importantly, some miRNAs, which

are associated with organism development, cell proliferation, and

differentiation in C. elegans, are found to be potential predictors for

tumors in human. For example, let-7 is found associated with

cancer. Vitro experiments have revealed that let-7 is reduced

frequently in lung cancer and over-expression of let-7 can inhibit

the growth of lung cancer cells in human [Takamizawa et al., 2004].

Whereas, though miR-34 up-regulated in both C. elegans and

mammalian cells in post-radiation, studies found that the up-

regulated miR-34 level was p53-independent in C. elegans [Kato

et al., 2009], but p53-dependent in human [Hermeking, 2009]. The

difference suggests that the role of miRNAs in C. elegans could

provide valuable information for human diseases but not completely

used for human diseases. Besides let-7 and miR-34, other miRNAs

involved in C. elegans development are also associated with cancer

(Table I).

C. elegans is also an excellent animal used for studying

neurodegenerative disease, such as Alzheimer’s disease (AD) and

Parkinson’s disease (PD). In AD patient, dysfunction of the amyloid

precursor protein (APP) is one of themajor risk factor [Selkoe, 2007].

In C. elegans, apl-1 is an APP-related gene, which is conserved in

evolution [Daigle and Li, 1993]. Though, no study reported the

directly regulation action of miRNAs on apl-1, apl-1 was found have

significant genetic interactions with let-7 family [Niwa et al., 2008].

These results indicate that apl-1 expression is temporally regulated

by miRNAs. It may provide new insights into the time dependent

progression of AD. In PD-associated C. elegans model, miR-64 and

miR-65 are co-expressed in a-synuclein transgenic strain and cat-1

Fig. 3. Pathways that influence lifespan extension in response to miRNAs regulation. In IIS pathway, DAF-16 is antagonized by the DAF-2. The low level of lin-14 expression

enhances the longevity promoters DAF-16 and HSF-1 expression. In DR pathway, defection of eat-2 enhances expression of transcription factor PHA-4 which is required to

mediate DR induced longevity specifically and it is also the validated target of the let-7. SKN-1 is a transcription factor required for responding to oxidative stress in intestine,

and also required for DR-induced lifespan extension [Bishop and Guarente, 2007]. The miR-71, miR-238, and miR-239 are involved in stress resistance suggesting possibility of

these miRNAs function through stress resistance to mediate lifespan in C. elegans. Dotted lines represent possible roles in these pathways.
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strain. Additionally members of let-7 family are co-expressed in the

a-synuclein transgenic strain and pdr-1 strain [Asikainen et al.,

2010]. These results suggest that different miRNAs may express

on different PD models of C. elegans and lead to different PD

pathogenesis.

FUTURE DIRECTIONS

Up-to-today, there are some of miRNAs that could regulate

organism development, cell proliferation, and differentiation as

well as lifespan in C. elegans, but the function of miRNAs in

C. elegans is largely unknown. Therefore, there will be an extensive

future in miRNAs research in C. elegans. Since the homology of

miRNAs in C. elegans and mammals, it will be a huge challenge to

study the correlation of miRNAs between C. elegans and mammals

even human. We believe C. elegans will help us further understand

miRNAs function and may discover new areas of small RNA world.
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